Recent major publications

  1. Clerc P, Jeanjean P, Hallali N, Gougeon M, Pipy B, Carrey J, Fourmy D, Gigoux V. Targeted magnetic intra-lysosomal hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death. J Control release (in press).
  2. Hallali N, Clerc P, Fourmy D et al. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments. Applied Physics Lett. 109: Issue 3 (2016).
  3. Ismail S, Gherardi MJ, Froese A, Zanoun M, Gigoux V, Clerc P, Gaits-Iacovoni F, Steyaert J, Nikolaev VO, Fourmy D. Internalized Receptor for Glucose-dependent Insulinotropic Peptide stimulates adenylyl cyclase on early endosomes. Biochem Pharmacol. 120:33-45 (2016).
  4. Ligat L, Saint-Laurent N, El-Mrani A, Gigoux V, Al Saati T, Tomasini R, Nigri J, Dejean S, Pont F, Cordelier P, Lopez F, Dufresne M. Pancreatic preneoplastic lesions signatures in plasma based on proteome profiling of mouse models. British Journal of Cancer 113:1590-1598 (2015).
  5. Ismail S, Dubois-Vedrenne I, Laval M, Tikhonova IG, D’Angelo R, Sanchez C, Clerc P, Gherardi MJ, Gigoux V, Magnan R, Fourmy D: Characterization of internalization of the human GIP receptor enables discovery of a biased agonist. Mol. Endocrinol. 414: 202-215 (2015).
  6. Masià M, Izquierdo I, Garrido G, Cordomí A, Perez-Benito L, Miller NL, Schlaepfer DD, Gigoux V, Aragay AM. Gastrin-stimulated Galpha13 activation of Rgnef (ArhGEF28) in DLD-1 colon carcinoma cells. J Biol Chem. 290: 15197-15209 (2015).
  7. Connord V, Clerc P, Hallali N, El Hajj Diab D, Fourmy D, Gigoux V*, Carrey J*. Real-time Analysis of Magnetic Hyperthermia Experiments on Living Cells under Confocal Microscope. Small 11(20):2437-45 (2015).
  8. Fourmy D, Carrey J, Gigoux V. Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting. Editorial in Nanomedecine 10(6):893-6.
  9. Sanchez, C. et al. Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death. ACS Nano 8, 1350-63 (2014).
  10. Gourni, E. et al. The Glucose-Dependent Insulinotropic Polypeptide Receptor: A Novel Target for Neuroendocrine Tumor Imaging-First Preclinical Studies. J Nucl Med 55, 976-982 (2014).
  11. Magnan, R. et al. Distinct CCK-2 receptor conformations associated with beta-arrestin-2 recruitment or phospholipase-C activation revealed by a biased antagonist. J Am Chem Soc 135, 2560-73 (2013).
  12. Gigoux, V. & Fourmy, D. Acting on Hormone Receptors with Minimal Side Effect on Cell Proliferation: A Timely Challenge Illustrated with GLP-1R and GPER. Front Endocrinol (Lausanne) 4, 50 (2013).
  13. Cordomi, A., Gomez-Tamayo, J.C., Gigoux, V. & Fourmy, D. Sulfur-containing amino acids in 7TMRs: molecular gears for pharmacology and function. Trends Pharmacol Sci 34, 320-31 (2013).
  14. Al Saati, T. et al. Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas. Am J Pathol 182, 1996-2004 (2013).
  15. Waser, B., Rehmann, R., Sanchez, C., Fourmy, D. & Reubi, J.C. Glucose-dependent insulinotropic polypeptide receptors in most gastroenteropancreatic and bronchial neuroendocrine tumors. J Clin Endocrinol Metab 97, 482-8 (2012).
  16. Sanchez, C. et al. Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors. Mol Cell Endocrinol 349, 170-9 (2012).
  17. Najib, S. et al. A switch of G protein-coupled receptor binding preference from phosphoinositide 3-kinase (PI3K)-p85 to filamin A negatively controls the PI3K pathway. Mol Cell Biol 32, 1004-16 (2012).
  18. Seux, M. et al. TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression. Oncogene 30, 3049-61 (2011).
  19. Pavan, M.V. et al. New anthranilic acid based antagonists with high affinity and selectivity for the human cholecystokinin receptor 1 (hCCK1-R). J Med Chem 54, 5769-85 (2011).
  20. Magnan, R. et al. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J Biol Chem 286, 6707-19 (2011).
  21. Fourmy, D., Gigoux, V. & Reubi, J.C. Gastrin in gastrointestinal diseases. Gastroenterology 141, 814-818 e1-3 (2011).
  22. Dufresne, M. et al. Id3 modulates cellular localization of bHLH Ptf1-p48 protein. Int J Cancer 129, 295-306 (2011).
  23. Yaqub, T. et al. Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol 77, 547-58 (2010).
  24. Langer, I. et al. Evidence for a direct and functional interaction between the regulators of G protein signaling-2 and phosphorylated C terminus of cholecystokinin-2 receptor. Mol Pharmacol 75, 502-13 (2009).
  25. Gigoux, V. et al. Reg genes are CCK2 receptor targets in ElasCCK2 mice pancreas. Regul Pept 146, 88-98 (2008).
  26. Foucaud, M. et al. Linking non-peptide ligand binding mode to activity at the human cholecystokinin-2 receptor. J Biol Chem 283, 35860-8 (2008).
  27. Foucaud, M. et al. Insights into the binding and activation sites of the receptors for cholecystokinin and gastrin. Regul Pept 145, 17-23 (2008).
  28. Marco, E. et al. Mechanism of activation of a G protein-coupled receptor, the human cholecystokinin-2 receptor. J Biol Chem 282, 28779-90 (2007).
  29. Clerc, P. et al. Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology 148, 1039-49 (2007).
  30. Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. Physiol Rev 86, 805-47 (2006).
  31. Clerc, P. et al. Expression of CCK2 receptors in the murine pancreas: proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology 122, 428-37 (2002).